

PAVEMENT EVALUATION AND OVERLAY DESIGN USING VIBRATORY NONDESTRUCTIVE TESTING AND LAYERED ELASTIC THEORY

Volume II
Validation of Procedure

Richard A. Weiss and Jim W. Hall, Jr.

U. S. Army Engineer Waterways Experiment Station Geotechnical Laboratory P. O. Box 631, Vicksburg, Miss. 39180

MAY 1980 FINAL REPORT

Document is available to the public through the National Technical Information Service,
Springfield, Va. 22151

Prepared for

U. S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D. C. 20591

BUC FILE CO

AD A O 8 771

80 8 7 029

NOTICES

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

I. Report No.	2. Government Acces	ssion No.	3. Recipion	r's Catalog N	0.
FAA-RD-77-186-II	AN-AND	1 726		May	80 /
4. Title and Subtitle			5. Report D		
PAVEMENT EVALUATION AND OV	erlay <u>design u</u> s	ING YIBRATORY	May 198	O ng Organizatio	na Cade
NONDESTRUCTIVE TESTING AND	LAYERED ELASTI	C THEORY.			
Volume II, VALIDATION OF P	ROCEDURE		8. Performin	g Organizatio	Report No.
Richard A. /Weiss / Jim W. H		·			6) 31
9. Performing Organisation Name and Add		~.	10. Work Un	it No. (TRAI	5)
U. S. Army Engineer Waterw Geotechnical Laboratory	ays experiment	Station 13		r er Grent-Ne	· · · · · · · · · · · · · · · · · · ·
P. O. Box 631, Vicksburg,	Miss. 39180	13		'3WAI-377	eriod Covered
12. Sponsoring Agency Name and Address		(9)	Final Re		Marie 15 American Street
U. S. Department of Transp Federal Aviation Administr		\cup	Oct		Dec
Systems Research and Devel		411.0	14. Sponson	Ing Agency C	-de
Washington, D. C. 20591		7!'	L		
15. Supplementery Notes					
1					
· · · · · · · · · · · · · · · · · · ·					
16 Abdused					
16. Abstract					
A method of pavement	evaluation and	overlay design	based or	n vibrat	ory nonde-
A method of pavement structive testing and laye	red elastic the	ory was develor	ed in Vo	lume I o	f this rep
A method of pavement structive testing and laye Volume II validates this m	red elastic the ethod by compar- ism for rigid as	ory was develor ing it with the nd flexible pay	ed in Vo	lume I o ional me Three a	f this repo thods of irport
A method of pavement structive testing and laye Volume II validates this m	red elastic the ethod by compar: ign for rigid a	ory was develor ing it with the nd flexible pay	ed in Vo convent rements.	lume I o ional me Three a	f this repo thods of irport
A method of pavement structive testing and layer Volume II validates this mevaluation and overlay dessites were used for the valuent between allowable los	red elastic the ethod by compar- ign for rigid a lidation. Resu ds determined i	ory was develor ing it with the nd flexible pav llts of the val From the NDT-el	ed in Vo convent ements. idation astic the	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay dessites were used for the value between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this mevaluation and overlay dessites were used for the valuent between allowable los	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay dessites were used for the value between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay dessites were used for the value between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay dessites were used for the value between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay dessites were used for the value between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay dessites were used for the value between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay dessites were used for the value between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay describes were used for the valuent between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay describes were used for the valuent between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay describes were used for the valuent between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay describes were used for the valuent between allowable loss conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this metaluation and overlay dessites were used for the value ment between allowable los conventional standard method	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Volume convent rements. idation astic the agreement	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this mevaluation and overlay dessites were used for the valuent between allowable loss conventional standard method thickness requirements details.	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pav alts of the val from the NDT-el there was poor	ed in Vo convent rements. idation astic the agreemen	lume I o ional me Three a showed go sory met	f this report thods of irport cood agree- hod and the
A method of pavement structive testing and layer Volume II validates this mevaluation and overlay dessites were used for the valuent between allowable los conventional standard method thickness requirements detailed. 17. Key Werds	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was developing it with the nd flexible pawalts of the value from the NDT-el there was poor ne two methods.	ed in Vo convent rements. idation astic the agreement	lume I o ional me Three a showed ge eory met t between	f this report thods of irport cod agree-hod and the noverlay
A method of pavement structive testing and layer Volume II validates this mevaluation and overlay dessites were used for the valuent between allowable low conventional standard method thickness requirements detailed. 17. Key Werds Nondestructive testing	red elastic the ethod by compar- ign for rigid a lidation. Resu das determined in nod. However, t	ory was develor ing it with the nd flexible pavents of the val from the NDT-el there was poor ne two methods.	ed in Vo e convent rements. idation astic the agreement	lume I o ional me Three a showed ge eory met t between	f this report thods of irport cood agree-hod and the noverlay couplic throughput through
A method of pavement structive testing and layer Volume II validates this mevaluation and overlay dessites were used for the valuational standard method thickness requirements detailed by the valuational standard method thickness requirements detailed by the valuation of the va	red elastic thee ethod by compar- ign for rigid as lidation. Resu ads determined in nod. However, to	ory was developing it with the nd flexible pay alts of the val from the NDT-el there was poor ne two methods. 18. Distribution State Document is as	ment ment	lume I o ional me Three a showed ge eory met t between	f this report thods of irport cood agree-hod and the noverlay couplic throughput through
A method of pavement structive testing and layer Volume II validates this mevaluation and overlay dessites were used for the value ment between allowable loss conventional standard method thickness requirements destinated by the standard method to the standard method that the standard method that the standard method that the standard method to the standard method to the standard method that the standard method that the standard method to the standard meth	red elastic thee ethod by compar- ign for rigid as lidation. Resu ads determined in nod. However, to	ory was developing it with the nd flexible pay alts of the valifrom the NDT-el there was poor ne two methods. 18. Distribution State Document is as the National State of the	ment real able rechnical real able rechnical rechnical	lume I o ional me Three a showed ge cory met t between to the p Informa	f this report thods of irport cood agree-hod and the noverlay cublic throation Servi
A method of pavement structive testing and layer Volume II validates this mevaluation and overlay dessites were used for the value ment between allowable loss conventional standard method thickness requirements destinated by the standard method to be standard meth	red elastic thee ethod by compar- ign for rigid a lidation. Resu ads determined i nod. However, t termined from the	ory was developing it with the nd flexible pay alts of the valifrom the NDT-el there was poor ne two methods. 18. Distribution State Document is as the National State of the	ment real able rechnical real able rechnical rechnical	lume I o ional me Three a showed ge eory met t between	f this report thods of irport cood agree-hod and the noverlay couplic throughput through
A method of pavement structive testing and layer Volume II validates this mevaluation and overlay dessites were used for the valuent between allowable low conventional standard method thickness requirements detailed. 17. Key Werds Nondestructive testing	red elastic thee ethod by compar- ign for rigid a lidation. Resu ads determined i nod. However, t termined from the	ory was developing it with the nd flexible pay alts of the val from the NDT-el there was poor ne two methods. 18. Distribution State Document is at the National 1 Springfield, it sif. (of this page)	ment real able rechnical real able rechnical rechnical	lume I o ional me Three a showed ge cory met t between to the p Informa	f this report thods of irport cood agree-hod and the noverlay cublic throation Servi

PREFACE

This study was conducted during the period October 1977 to

December 1978 by personnel of the Geotechnical Laboratory (GL), U. S.

Army Engineer Waterways Experiment Station (WES), for the U. S. Department of Transportation, Federal Aviation Administration, as a part of

Inter-Agency Agreement No. DOT FA73WAI-377, "New Pavement Design

Methodology."

The study was conducted under the general supervision of Messrs. J. P. Sale and R. G. Ahlvin, Chief and Assistant Chief, respectively, of GL; R. L. Hutchinson and H. H. Ulery, Jr., Chief and Principal Technical Advisor, respectively, of the Pavement Systems Division; and under the direct supervision of Messrs. A. H. Joseph, Chief of the Engineering Investigation Testing and Validation Group; and J. W. Hall, Jr., Chief of the Prototype Testing and Evaluation Unit. The programming for this study was accomplished in part by Mr. Ricky Austin, Research and Analysis Group. Significant contributions were made by Mr. A. J. Bush III of the Prototype Testing and Evaluation Unit, and by Dr. W. R. Barker of the Research and Analysis Group. The report was written by Dr. R. A. Weiss and Mr. J. W. Hall, Jr.

COL John L. Cannon, CE, and COL Nelson P. Conover, CE, were Directors of the WES during the conduct of this study and the preparation of this report. The Technical Director was Mr. F. R. Brown.

Acce	ssion For		
DDC ! Unani	GRA&I TAB nounced ification		
Ву			
Distr	ibut on/		
Avai	lat 12 17	di wa s	
Dist	Avail specia	-	

METRIC CONVERSION FACTORS

	1		. 2 .	i = '	7 E		<i>፞</i> ቔ፟ቇ፟፟	į		8.2		8 = 1	L B	Ĭ7	3			۴			
c Measures	3		inches	1	wiles		square inches square yards	aquere miles acres		ounces pounds short tons		fluid ounces	querts	gailtons cubic feet	cubic yards			Fahramhait temperature		2 1 2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00 00
rsions from Motri	Multiply by	LENGTW	9.0	, m .	r. 9°0	AREA	0.16	2.5	MASS (weight)	0.036 2.2 1.1	VOLUME	0.03	1.06	9.26 35	13		IEMPERATURE (OXOCT)	9/5 (then add 32)		8 ₹	37.40
Approximate Conversions from Metric Messeres	When You Knew	ļ	millimaters	raters	kilometers	}	square centimeters square meters	hectores (10,000 m²)	-	grams kilograms tomes (1000 kg)	•	millilitors	liters	Liters Cubic meters	cubic meters			Celsius temperature	<u> </u>	†	۰ ۵
	Symbol		ŧ s	E 1	. 1		፞ ቔኈ፞	5 2		o # ~		Ŧ -	- -	~ " ∈	æ			္န		- G-	90
32		08	11111111		21	91			131111111111111111111111111111111111111		07				9		s 		E .	2 1	
• '1' '1'	1,1,1,1		ייין יו 	''	''' ''' 7	11/11	' ' ' ' •	יןיין'	' ' ' 		" ""	11- 1-11-	' ' 	'''	'I'	' ' ' 	rju	' '' '	יןייןיין	'	thes.
	S. S			5	5 = 5		7 87∉	ኈ፝ቜ.	2	92°		ΕŦ	Ŧ			. "E "	È	å	μ	7.5	
Measures	To Find			Centimaters	Contimetors metors kilometors		Square contimeters	square meters square kilometers	Neclares	grams kilograms tormes		milfiliters milfiliters	milliters	liters liters	liters	cubic meters	Cubic meters		Cersius temperature	1962 1 12 1 12 12 13 13 14 14 15 18 26.	
Approximate Corressions to Metric Mas	Mattigdy by	1000	LENGIR	.2.5	0.9 0.9 8.1	AREA	8.5 80.0	6.9 5.6	MASS (weight)	28 0.45 0.9	VOLUME	يو مه	2 8	0.24 0.47	0.95 3.8	0.03	S 0.76 TEMPERATURE (event)		5/5 (andr subtracting 32)	per Read to be part to the fire	Service Commission of the service of
Appresiment Conv	When You Know		1	inches	e de la company	}	square inches	square yards square miles	- 1	ounces pounds short tens (2000 fb)		seconomic supposes	fluid cunces		ements entions	cubic feet	TEMP?		Namparatura	The design each for other measured there are also bed in these doctors of	r, arc Madrudas, Price 52,25, S
	Start			5 4	: Z (ቴ ቴ	¥°i		12		2.2	20 52	. E	5 3	23	2	,	•	# 6 · · ·	

TABLE OF CONTENTS

	Page
INTRODUCTION	1
BACKGROUND	1 3 3
DETERMINATION OF SUBGRADE YOUNG'S MODULUS BY VIBRATORY NONDESTRUCTIVE TESTING	5
MEASUREMENT OF DYNAMIC STIFFNESS MODULUS (DSM) DYNAMIC PAVEMENT RESPONSE COMPUTER PROGRAM SUBE	5 7 8
ALLOWABLE LOAD-CARRYING CAPACITY AND REQUIRED OVERLAY THICKNESS OF PAVEMENTS	10
COMPUTER PROGRAM PAVEVAL	10 13 13
VALIDATION	14
LABORATORY AND FIELD SOIL TESTS	14
MODULUS	14
AND REQUIRED OVERLAY THICKNESS	30
SUMMARY AND CONCLUSIONS	48
SUMMARY	48 48
REFERENCES	50

V

INTRODUCTION

BACKGROUND

The increasing expense of pavement construction and rehabilitation makes it essential to have a fast and reliable method of accurately predicting the allowable load-carrying capacity and the required overlay thickness for pavement upgrading. The method of vibratory nondestructive testing of pavements can play an important part for the rapid evaluation of airport pavements. The U.S. Army Engineer Waterways Experiment Station (WES) was requested by the Federal Aviation Administration (FAA) to develop a method of pavement evaluation and overlay design based on vibratory nondestructive testing combined with a layered elastic theoretical formalism. This report evaluates this method of pavement evaluation and overlay design.

The method of pavement evaluation and overlay design validation presented herein consists of determining the subgrade Young's modulus from the dynamic response of a pavement measured by vibratory nondestructive tests and using the layered elastic theory and the determined value of the subgrade Young's modulus to calculate the allowable load-carrying capacity and the required overlay thickness of a pavement.

Two computer programs, SUBE and PAVEVAL, are used to evaluate a pavement based on vibratory nondestructive testing and layered elastic theory. The computer program SUBE calculates the value of the subgrade Young's modulus from vibratory nondestructive field test data, and the computer program PAVEVAL calculates the allowable load-carrying capacity and the required overlay thickness for pavement upgrading.

This study compares the pavement evaluation and overlay design method that uses vibratory nondestructive testing and layered elasticity theory with the conventional method for evaluating asphaltic concrete (AC) pavements that uses the California Bearing Ratio (CBR) and with the Westergaard method of evaluating portland cement concrete (PCC) pavements.

The CBR and Westergaard methods required destructive tests to measure the CBR and coefficient of subgrade reaction, respectively. To circumvent the destructive tests, a vibratory nondestructive test method of evaluating AC and PCC pavements was developed at the WES, which directly correlates the allowable load-carrying capacity and required overlay thickness to a dynamic stiffness modulus (DSM) that is measured at the pavement surface. The combined layered elastic theory and vibratory nondestructive test methods of pavement evaluation are also compared with the direct DSM correlation method.

The DSM is obtained from vibratory nondestructive test data that are obtained using the WES electrohydraulic vibrator, which can generate dynamic loads up to 15 kips (peak value) with a constant 16-kip static load (WES 16-kip vibrator) and a constant frequency of 15 Hz. These data consist of dynamic load-deflection curves that are measured at the pavement surface. The dynamic load-deflection curves are nonlinear in general, and the DSM is the slope of the dynamic load-deflection curve for a dynamic load of about 10-14 kips. The measured DSM is corrected to a common pavement temperature of 70°F, and the corrected value of the DSM is correlated to the allowable load-carrying capacity and the required overlay thickness of a pavement. The DSM method is empirical and does not take into consideration: (a) the layered elastic structure of the pavement, (b) the interface conditions between the pavement layers, and (c) the load transfer across rigid pavement slabs.

In order to improve on the method of directly correlating pavement performance with vibratory nondestructive test data, an attempt was made to combine the layered elastic theory of pavements with the pavement impedance values measured by vibratory nondestructive testing. In this way, the pavement structure could be considered. The layered elastic model of pavements required the Young's modulus and Poisson's ratio of the subgrade and pavement layers to be known. The elastic moduli of the pavement layers are estimated by various means, and only the subgrade Young's modulus is obtained from vibratory nondestructive test data.

Three airport pavement sites were selected for this validation, Albuquerque Sunport, Minneapolis-St. Paul International Airport, and Knox County Airport (Rockland, Maine). Vibratory nondestructive tests and conventional destructive tests were conducted at these pavement sites. Pavement properties, such as thicknesses, moisture content, density, and CBR, were determined by drilling holes through the pavement layers and the subgrade. Undisturbed subgrade soil specimens were taken for laboratory resilient modulus tests. Samples of the AC, PCC, base, and subbase were also obtained for laboratory analysis.

OBJECTIVES

The results of the combined methods of layered elastic and vibratory nondestructive testing are compared with the conventional methods of pavement evaluation and overlay design. The specific objectives of this study are:

- a. To compare the values of the subgrade Young's modulus predicted from vibratory nondestructive tests by SUBE with the subgrade Young's modulus values obtained from measured CBR values using the relation E = 1500 CBR, and with Young's modulus values obtained from laboratory resilient modulus tests.
- <u>b.</u> To compare the values of the allowable load-carrying capacity and the required overlay thickness calculated by the layered elastic theory and the vibratory nondestructive testing approach with the conventional destructive CBR and Westergaard methods and also with the direct correlation DSM method.

SCOPE

To achieve these objectives the following experimental work and analyses were conducted:

EXPERIMENTAL WORK

- a. Vibratory nondestructive tests were conducted to obtain dynamic load-deflection curves for AC and PCC pavements at three airport pavement sites.
- b. CBR values were measured for the base, subbase, and subgrade of the pavements at the three airport sites.

- c. Laboratory resilient modulus tests were conducted on undisturbed soil samples taken from the subgrade at several locations at the three selected airport sites.
- d. Laboratory soil tests were conducted on samples of base, subbase, and subgrade materials to determine their classification.

ANALYSES

- a. The computer program SUBE was used to calculate the values of the subgrade Young's modulus from the measured dynamic loaddeflection curves.
- <u>b.</u> The computer program PAVEVAL was used to determine the allowable load-carrying capacity and the required overlay thickness of the pavements at the three airport test sites.
- c. The allowable load-carrying capacity and the required overlay thickness of the pavements at the three selected airport sites were calculated by the conventional destructive test methods and by the DSM method, and the results were compared with the layered elastic method.

DETERMINATION OF SUBGRADE YOUNG'S MODULUS BY VIBRATORY NONDESTRUCTIVE TESTING

MEASUREMENT OF DYNAMIC STIFFNESS MODULUS (DSM)

The WES 16-kip vibrator applies a static load of 16 kips to the pavement surface and a dynamic load up to 15 kips at frequencies ranging from 5 to 100 Hz. Both static and dynamic loads are applied to the pavement surface through a circular 18-in.-diam baseplate. Two types of vibratory nondestructive tests were performed on pavements:

- a. Dynamic load-deflection curves that show the dynamic deflection of the pavement surface as a function of the applied load.
- <u>b</u>. Frequency response spectrum curves that show the dynamic deflection as a function of frequency for a fixed dynamic load.

Only method <u>a</u> above is used in this study to determine the subgrade Young's modulus. In general, these dynamic load-deflection curves are nonlinear, and a nonlinear dynamic theory is required to extract the value of the subgrade Young's modulus from these measured curves. The nonlinear dynamic theory is used to remove the extraneous effects of the static and dynamic loads developed by the vibrator on the predicted values of the subgrade Young's modulus. 3,4 The computer program SUBE was developed from the nonlinear theory of pavement response to dynamic loads and is used to determine the subgrade Young's modulus from the measured dynamic load-deflection curves.

A typical dynamic load-deflection curve measured at 15 Hz is presented in Figure 1. The dynamic deflection of the pavement surface is a nonlinear function of the dynamic load applied to the pavement surface. The slope of the dynamic load-deflection curve (tangent modulus) is called the DSM. The numerical value of the DSM is obtained from the region of high dynamic loading.

Figure 1. Typical dynamic load-deflection curve for AC pavement

DYNAMIC PAVEMENT RESPONSE COMPUTER PROGRAM SUBE

The computer program SUBE calculates the value of the subgrade Young's modulus from input data taken from the measured dynamic load-deflection curves. The pavement input parameters for the computer program SUBE include the Young's modulus, the Poisson's ratio, and the thickness of each pavement layer, as well as the Poisson's ratio of the subgrade. The computer input that is taken from vibratory nondestructive test data is the DSM value and a point-by-point description of the measured dynamic load-deflection curve. The computer program SUBE iterates the value of the subgrade Young's modulus and determines the value of the subgrade Young's modulus that makes the theoretically predicted DSM value agree with the measured DSM value so that the theoretically predicted dynamic load-deflection curve will agree with the measured dynamic load-deflection curve. Figure 2 outlines the procedure.

The Poisson's ratio of the wearing surface and base and subbase courses was chosen according to the rules $\nu=0.2$ for PCC, $\nu=0.3$ for AC pavements and AC base materials, and $\nu=0.35$ for all other base and subbase materials. The Poisson's ratio for all subgrade soils is taken to be $\nu=0.35$. A reasonable estimate of the values of the Young's modulus of base and subbase materials can be obtained from the composition of these materials. When the CBR values of the base and subbase materials are known, the Young's modulus values can be estimated from the equation E=1500 CBR.

The Young's modulus of the PCC wearing surface of a rigid pavement is taken to be 4.0×10^6 psi. The temperature-dependent Young's modulus for AC pavement and AC base materials is obtained from Figure 3, corresponding to the pavement surface temperature at the time of the vibratory nondestructive testing. The temperature-dependent Young's modulus value is entered into the computer program SUBE to determine the subgrade Young's modulus.

DYNAMIC LOAD - DEFLECTION METHOD

Figure 2. Outline of procedure for predicting the subgrade Young's modulus from the measured dynamic response of a pavement

LABORATORY RESILIENT MODULUS TESTS

It was planned to compare the values of the subgrade Young's modulus predicted from vibratory nondestructive field tests using the computer program SUBE with the values of the subgrade Young's modulus extracted from the laboratory resilient modulus test. The laboratory resilient modulus is expressed in terms of the applied dynamic deviator stress and the static confining pressure. 10-12

Figure 3. Assumed temperature dependence of Young's modulus of AC pavement and AC base materials

ALLOWABLE LOAD-CARRYING CAPACITY AND REQUIRED OVERLAY THICKNESS OF PAVEMENTS

COMPUTER PROGRAM PAVEVAL

Within the context of the layered elastic theory, pavements are represented by a stack of elastic layers, the subgrade being of infinite extent. This layered elastic theoretical model of a pavement structure is used to calculate the elastic stress and strain at any point in the pavement or subgrade. Each pavement layer is characterized by a Poisson's ratio (ν), a Young's modulus (E), and a layer thickness (h). The Shell BISAR computer program is based on the layered elastic theory and relates the stress and the strain in each pavement layer to the static load applied to the surface of a pavement. Figure 4 represents a typical pavement structure according to the layered elastic theory approach.

Figure 4. Typical pavement structure with loading according to layered elastic theory

Experience has shown that the condition of failure in AC pavements can be described by a limiting elastic (resilient) vertical strain in the top of the subgrade and a limiting tensile strain at the bottom of the AC pavement layer, while the condition of failure in rigid pavements can be described by a limiting tensile stress at the bottom of the PCC layer. For a given load at the pavement surface, the values of the stress and the strain in the pavement and the subgrade depend on

the Young's modulus and the Poisson's ratio of the subgrade and each pavement layer.

For the evaluation of a pavement and the determination of the required overlay thickness, the basic BISAR computer program was modified to include a procedure for iterating the surface load and the overlay thickness until the vertical strain at the top of the subgrade for AC pavements equals the limiting vertical strain value or the tensile strain at the bottom of the AC layer equals the limiting value of the tensile strain, and until the tensile stress at the bottom of the PCC layer of rigid pavements equals the limiting value of tensile stress. The resulting computer program called PAVEVAL is used to calculate the allowable load-carrying capacity and the required overlay thickness of a pavement. The aircraft characteristics required for the computer program PAVEVAL include the tire contact area, the load on one wheel, wheel spacings, and the total number of main gear wheels.

The computer program PAVEVAL was written to incorporate the material parameters and the limiting stress and strain criteria into a procedure for calculating the allowable load-carrying capacity and the overlay thickness required for pavement upgrading. PAVEVAL, used in conjunction with the computer program SUBE that predicts the value of the subgrade Young's modulus, was developed to be a practical tool for the pavement engineers to use for evaluation and overlay design purposes. Figure 5 gives a flow diagram for the general procedure used for pavement evaluation and overlay design.

The choice of the elastic moduli of the pavement layers that are entered into the computer program PAVEVAL is the same as those selected for the computer program SUBE with the exception that the Young's modulus of AC pavement and AC base materials was chosen to have the value E = 450,000 psi in PAVEVAL for the numerical calculations made in this study. This value of the Young's modulus is obtained from Figure 3, corresponding to an assumed average yearly pavement temperature of $70^{\circ}F$. This temperature value was chosen in order to compare the results with the DSM evaluation procedure, which assumes a yearly temperature average of $70^{\circ}F$. However, PAVEVAL has a greater capability for pavement

Figure 5. Pavement evaluation and overlay design by the combined methods of layered elastic theory and vibratory nondestructive testing

evaluation purposes because it can be used to study the seasonal variation of pavement allowable load-carrying capacity by using Figure 3 to select the proper seasonal variations in the value of the Young's modulus of AC pavement layers. For this purpose, the seasonal variation of the base, subbase, and subgrade Young's moduli must also be considered, such as during frost thaw conditions. The seasonal variation of these Young's moduli values may possibly be determined either by conducting vibratory nondestructive tests during the different seasons or by extrapolating laboratory-measured Young's moduli according to seasonal temperature and moisture changes.

LIMITING STRESS AND STRAIN CONDITIONS

The allowable load-carrying capacity of a pavement and the overlay thickness required for pavement upgrading are related to the limiting tensile strain at the bottom of the AC layer and to the limiting vertical strain at the top of the subgrade for AC pavements, and to the limiting tensile stress at the bottom of the PCC layer for rigid pavements. ¹³⁻¹⁵ The limiting value of the vertical strain at the top of the subgrade depends on the number of strain repetitions and on the value of the Young's modulus of the soil in the subgrade.

The lateral distribution of traffic was handled by using pass-to-coverage ratios for individual aircraft. Mixed traffic was not considered in this study, but it can be incorporated into PAVEVAL provided the frequency distribution of operating aircraft is known.

SINGLE- AND MULTIPLE-WHEEL LOADINGS

To determine the allowable load-carrying capacity and the required overlay thickness for a single-wheel loading on a pavement surface, the stress and the strain due to the single load are compared with the limiting stress and strain values in the pavement and the subgrade. The load on one wheel is entered into the computer program PAVEVAL.

Actual aircraft loadings on a pavement occur through two or more wheels in close proximity. Dual-wheel (two-wheel) and dual-tandem-wheel (four-wheel) configurations are commonly used. For the case of multiple wheels, the total strain or stress in the pavement beneath one wheel is due in part to the presence of the other wheels. The maximum values of the stress and the strain at some depth in the pavement occur at a point between the wheels. However, a good approximation of these maximum values can be obtained by calculating the values of the stress and the strain at the same depth in the pavement and directly beneath one of the wheels. The multiple-wheel calculations in the computer program PAVEVAL are made within this approximation. PAVEVAL, as well as the BISAR program on which it is based, calculates the stress and the strain at any point in the pavement due to a multiple-wheel loading and can also compare them to their corresponding limiting values.

VALIDATION

LABORATORY AND FIELD SOIL TESTS

Laboratory soil classification tests were performed on the samples taken from the base, subbase, and subgrade at the three airport pavement sites investigated. Field measurements of the thickness and the CBR were also made of the base, subbase, and subgrade materials by drilling core holes (small aperture tests 18). The coefficient of subgrade reaction that is required for the Westergaard calculation of PCC pavement strength using the Westergaard theory was obtained indirectly from measurements of the subgrade CBR. 18 The Young's moduli of the material in the pavement layers was calculated from the formula E = 1500 CBR. The mean pavement temperature was measured for AC wearing surfaces at the time the vibratory nondestructive tests were conducted. Tables 1-3 present the results of the field and laboratory tests.

The subgrade soils at the three airport sites were inhomogeneous, and accurate CBR measurements could not be made. The subgrade soil at the Knox County Airport, Rockland, Maine, contained rocks and boulders, and at the Minneapolis-St. Paul International Airport, the subgrade often was a thin layer of soil overlying bedrock.

Laboratory resilient modulus values were also measured for a series of dynamic deviator stresses and static confining pressures on undisturbed subgrade soil samples taken from the pavement sites. Most of the subgrade soil samples taken from the Rockland and Minneapolis-St. Paul sites were too poor in quality to perform resilient modulus tests, but the subgrade soil samples from the Albuquerque site produced some resilient modulus measurements. Figures 6-15 show the results of the resilient modulus measurements.

NUMERICAL VALUES OF THE PREDICTED SUBGRADE YOUNG'S MODULUS

At each pavement location, four dynamic load-deflection curves were measured at 15 Hz. The computer program SUBE was used to determine a predicted value of the subgrade Young's modulus for each measured

Table 1. Pavement Structures Investigated at Albuquerque Sunport

					1	PROFILE WETOCE			Š	Course				rebbese Course	Course		li			Spirate			
2 2	Site Mo. Perium See		-	- 8		'د آ چه ^۳ انه				a~ ~					.		<u>~</u>			(1500 024)	øĝ.	,	ā
]	1 R/W 17-35	£ 23	2	9 :	a		0.2 12				4	<u> </u>	reteriel CE	# 		4	4 1	Meriel Meilty	8	e s	22.3	4 5	<u>kire/in.</u> 2013
~	R/W 17-35	19+00	Ş	62.4		0.5 0	0.3 3	, de 1	ģ	82	0.35	•	1	1	1	:	1	sand SH gravelly, silty sand	₹.	\$	3.5	0.3	\$
m	R/W 17-35 100+07	100•01	ğ	100		b.0	0.2 6	; ;	ı	t	;	ŀ	1.	1	1	ŧ		SC clayer	ដ	19.5	i	0.35	Ø
	forth ware-	1	ğ	1	92	6.0 0	0.2 .9	ı	1	ı	t	ı	1	1	1	ł	1	SC clayer	æ	37.5	1	0.35	1457
-	ī	9	¥	7.2	١.	0°.3	0.3 7	2	8 3	ĸ	0.33	9	=	£	a	o. 33	~	SC eilty	8	R	27.5	0.33	£
-	Į	21+00	4	3 8	1	0.4.0	0.3 \$	ž	\$00	83	0.35 1	21	1	ı	ŀ	ł	1	SC-SM silty sand	ĸ	37.5	27.8	0.35	20
•	7. A	3,8	¥	28.1	1	0.2 0	0.3 2	30-08	ಜ	131	0.35 1	12	1	1	i	ŧ	t	SC-SM silty sand	8	22	16.0	0.35	\$
- -	B/V 3-21	8	¥	¥.3 -		0.8	0.3 4.5	3	ಷ	æ	0.35	6	1	ı	1	1	1	SM-SC clayer silty sand	91	2	12.8	0.35	8
•	R/W 12-30	1+05	2	8		0 0.4	0.2 C	SC-8	%	は	0.35 10	9	1	1	1	ł	1	ML silty send	7	z	1.0	0.33	86
9	P/W 12-30	30+06	¥C	85.8	1	0.16 0	0.3 6	SC-SK	ទ	137	0.35 1	11.	1	ı	ı	ł	1	SM silty sand	忒	5	9.6	0.35	912
n	7-2	00 6	¥	1 28		0.2 0	0.3 6	BC-SM	8	147	0.35	9	1	ı	ı	1	ı	ML silty	%	\$	19.1	0.35	72
21	7.5	26+00	¥C	2.2	1	0.2	0.3 4	ಜ	₹.	3	0.35		ì	ł	1	1	1	SC clayer sand	15	8.5	7.71	0.35	459
13	<u>.</u>	00+84	¥	63.1	ა 	c.2 0	0.3 5.5	မ္တ	₹.	91	0.35 1	10	;	1	ı	1	ŧ	SC silty	91	₹	19.0	0.35	2 6
4	4	4•12.5	ğ	1 38		0.4	0.5 20	ì	ı	i	1	ŀ	ì	1	1	1	1	SM silty send	€	52.5	8.8	0.35	4175
ង	1-38	5+00 5+00	¥C			9.16 c	e 6:3	SC-SM	8	143	9.35 1	10	;	ł	ŀ	1	ŧ	SC-SM silty sand	22	82.5	2.5	9.35	5 5
2	60 60	21+00	Ų	32.3		. 60.0	60	N S-28	8	137	0.35	-	1	:	1	ł	l	SC-SM silty sand	7	61.5	:	0.35	152
7.	د ئ	37+05	¥	54.6	1	0 80 0	0.3 4.5	3 5-58	100	021	0.35	•	₹	51	28	0.35	•	SC-SM silty sand	9	22	53	0.35	1018

• All bace course material is gravelly, silty said and calache. •• There is I in, of asphalt-treated base above the base course.

11

Table 2. Pavement Structures Investigated at Knox County Airport, Rockland Maine

	Market 10.	527	552	829	470	397	1	¥78	567	:
	77	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
(STIPE)	10 ³ pet	7.9	19.8	18.6	9.0	4.5	ı	8.0	14.0	•
11500 (RR)	10 ³ ps 1	19.5	28.5	3.75	3.75	3.75	21.0	21.0	21.0	3.75
	8	ដ	19	2.5	2.5	2.5	7.	17	17	2.5
	Material	CL sandy clay with gravel		CL sandy clay	CL sandy clay	SM silty sand with gravel		CL lean clay with		
اء ا	₹ <u>1</u> 0°	8	5.75	9	7.25	4.75	+45	81	54+	27+
	ام	0.35	0.35	0.35	0.35	0.35	0.35 24+	0.35 18	0.35 24+	0.35 27+
E2	03 pe1	5.64	52.5	78	98	64.5	28.5	55.5	15	58.5
2	CBR 103	æ	35	22	2	£4	19	37	ន	8
	Material	Crushed stone P-209	Crushed stone P-209	Crushed Stone P-209	Crushed Stone P-209	Crushed stone P-209	Crushed stone P-208	Crushed stone P-208	Crushed stone P-208	Crushed stone P-209
i d	ر د	0.3 3.5	0.3 3.25	0.3 3	0.3 3.25	0.3 3.25	0.3 4.375	0.3 4	0.3 3	0.3 3.5
E I SCE	10 ³ ps1	280	3 60	250	240	320	38	210	230	280
Mearing O	18	₹ .	#	4	87	22	7	76	79	75
	Material	V C	¥C	¥C	¥C	V C	AC	AC	AC	V C
	Sta	9	23+00	37+00	22+00	15+00A	¥2+0 0	30+00	5465	00 + 9
100 E 1 0 II	Feature	R/W 21	R/W 21	R/W 21	T-B	Remp	R/W 13	R/W 13	R/W 13	T-A
	Site No.	- -	~	m	4	~	9	-	6 0	0,

Pavement Structures Investigated at Minneapolis-St. Paul International Airport Table 3.

100 TOCAL 100			Hearing Surf	Burfece	إ		, 27)	Sace Course	2474			Aug.	Subtage Course	11700							
31.5 26. Feeture	ំ	Vateria	Temp. ** Com /aterial Flex. Str. ** 10	ر ب _ا در با	, , , , , , , , , , , , , , , , , , ,	ષ્ટ્ર, ગુ	1.00	3	2 2	۶.					1			15.00 CBR)	(a)		Ž
B/# 111-79P 5+65	3 Sec. 5	554	242	4	ן :	1 2 2		8		4		Material CBK	al al	788	7	Meterial	5	107 144	102 501		, at/selfa
			2	į	y	C) - 77	Crushed stone	5	22.5	S	7.75	1	:		: :	SM silty cand	3	31.5	27.3	9.33	3
	\$ \$	ě	6 08	4.0	0.5	0.11	Crushed stone	2	73.5	0.33	7.5	:	;	'	1	SM silty	R	\$	35.8	0.35	26k8
8/# 118-29L 7+15	% 7•15	AC/PCC	3.7. 3.88 3.7.88	2.4	0.3	8.5 AC 9.5 PCC	!	ł	ł	ŧ	ı		;		; ;	SM silty	7.	×	203.0	0.35	9 1 6
	% ₹	AC/PCC	63.75 822	0.51	0.3	8.0 AC 14.0 PCC	Crushed stone	₹	61.9	0.35	5.75	1	· 1		1	SM silty	3	*	216.0	0.35	8
8/W MB-22L	35	SOC.	783	0.4	0.2	11.0	Crushed stone	6 0	111	0.35	9.3	!		,	: :	SP-SK send	=	ž	5	;	
	62+17	ğ	615	6.0	0.2	14.5	Crushed stone with fines	83	124.5	0.35	1.5			•	! !	BC clayey send with	£	112.5	233.0	£ 6	1035 4740
T/W 115-29R 3400	3400 44	1 00	85.6	0.4	0.8	12.0	Sandy gravel	100	150	0.35	0.0			,	! !	SW silty	æ	5 6.5	223.0	0.35	3880
T/4 11P-29L 4475	7. 1.	<u>8</u>	£52	0.4	0.2	13.25	Crushed stone with fines	7	61.5	5.35 12.75	2.75	;	1	1	} }	SP-SM sand	100	83	183.0	0.35	6700
T/W MR-22.	1+10	:5 4	985	0.4	0.2	11.0	ł	ŀ	t	ı	ł		i	1	!	SP-SM sand with gravel	27	.6.5	18.0	0.35	1860
10 New reserve 7+34 taxivay	*	554	ř.	0.4	0.5	16.9	Crushed 11me- stone	70.5	105.8	9.35	6.38	;	1	1	!	SM gravelly,	1	t	35.3	0.35	2855
East olde taxivay	23.65	2	#	0.4	9.5	15.63	Grushed stone	72.5	106.8	0.35	3.0	. 23	55.5 83	83.3 0.	0.25 72	SM silty	1	1	1	0.35	7760
Old north		B GC	%	6.4	0.5	11.9	ŀ	ŧ	ŧ	ŧ	1	;	 	1	1	SC clayey sand	13.0	19.5	5	0.35	1720
Cld ramp		33d/57	61.9°	0.57 0.4	6.5	2.25 AC 5.25 PCC	;	ı	1	!	1	' !	; ;		ŧ	SM silty sand	8.0	21	=	0.35	910
Pasic		<u></u>	723	o.	0.2	14.5	Silty sendy gravel	::	22	0.35	u.		1	1	, 1	TO-DK OS	10.5	15.8	13	0.35	2750

* Temporature on AC/PTT parements, OP ** Flammumal strength of concrete, poi

Figure 6. Resilient modulus test, Albuquerque-9

Figure 7. Resilient modulas test, Albuquerque-11

Figure 8. Resilient modulus test, Albuquerque-12

Figure 9. Resilient modulus test, Albuquerque-13

Figure 10. Resilient modulus test, Albuquerque-11

Figure 11. Resilient modulus test, Albuquerque-17

Figure 12. Resilient modulus test, Rockland-1

Figure 13. Resilient modulus test, Rockland-4

Figure 14. Resilient modulus test, Rockland-7

Figure 15. Resilient modulus test, Minneapolis-St. Paul-11L

dynamic load-deflection curve. The set of predicted Young's moduli at each location was averaged, and this average value of the subgrade Young's modulus appears in Tables 1-3 for each test location at the three airport sites. The four values of the Young's modulus predicted at each location did not vary by more than 15 percent, so the average value represents the subgrade Young's modulus for a given location.

A simple relationship between the subgrade Young's modulus and the CBR has been obtained by wave propagation techniques and is given by the empirical formula $E_{\rm S}=1500$ CBR, where $E_{\rm S}$ represents the subgrade Young's modulus. The nonlinear dynamic theory of pavement response and the associated computer program SUBE were developed to predict values of the subgrade Young's modulus that are in reasonable agreement with the predictions of $E_{\rm S}=1500$ CBR.

Figure 16 shows a comparison of the subgrade Young's modulus values predicted by the nonlinear dynamic response theory through the computer program SUBE and the subgrade Young's modulus values derived from the empirical formula $E_{\rm g}=1500$ CBR. Figures 17 and 18 give a comparison between the values of the subgrade Young's modulus obtained from the laboratory resilient modulus tests and from the SUBE and 1500 CBR methods, respectively.

The Young's modulus of a soil can be extracted from the resilient modulus that is measured in the laboratory. The resilient modulus is a measure of the response of a soil to dynamic loads. Its value depends on both the static and dynamic loads. The Young's modulus is a measure of the response of a soil to static loads, and its value depends only on the static confining pressure. The resilient modulus and the Young's modulus cannot be used interchangeably. The extraction of the Young's modulus from the resilient modulus by the method given in Reference 4 was not done for this validation report. Instead, as a first approximation, the values of the resilient modulus for zero dynamic load were used to obtain the Young's modulus values for the comparison with 1500 CBR shown in Figures 17 and 18.

The choice of zero dynamic load is made because the Young's modulus is a static elastic quantity that is defined for zero dynamic

Figure 16. Comparison of predicted and measured subgrade Young's moduli

Figure 17. Comparison of values of the subgrade Young's modulus as predicted by SUBE, by 1500 CBR, and by extraction from the laboratory resilient modulus test at $\sigma_{\rm g}$ = 5 psi

Figure 18. Comparison of values of the subgrade Young's modulus as predicted by SUBE, by 1500 CBR, and by extraction from the laboratory resilient modulus test at $\sigma_{\rm g}$ = 10 psi

loads. Furthermore, the CBR measurement is made under static loading conditions, and it should likewise be compared with a static elastic modulus—the Young's modulus extracted from the resilient modulus. Finally, the formula E = 1500 CBR is determined from wave propagation tests under vanishingly small dynamic pressures, so that the Young's modulus determined in this way refers essentially to zero dynamic loading. No doubt better agreement with the resilient modulus is possible if larger values of dynamic deviator stress are chosen, but the choice is arbitrary and any amount of agreement could be obtained by an appropriate choice of value for the dynamic deviator stress.

NUMERICAL VALUES OF THE ALLOWABLE LOAD-CARRYING CAPACITY AND REQUIRED OVERLAY THICKNESS

For a validation of the procedures outlined in this study, a number of rigid and flexible pavement structures at the three selected airport sites were evaluated for single- and multiple-wheel loadings, and the allowable load-carrying capacity and the required overlay thickness were the results of nondestructive testing and layered elastic theory. For these pavement structures, the allowable load-carrying capacity and the required overlay thickness were also determined by the conventional CBR and DSM methods for AC pavements and by the Westergaard and DSM methods for rigid pavements. Tables 4-12 and Figures 19-22 show the results.

In Tables 4-12, the allowable load is expressed in terms of total gross aircraft load and the load on one wheel of each aircraft. Figure 19 presents comparisons of the allowable load on a single wheel with contact area of 254 sq in. This contact area corresponds to the contact area of the 18-in.-diam load plate of the 16-kip vibrator. Figure 20 makes similar comparisons for the allowable gross load of a DC-8 aircraft.

Figures 23 and 24 show the effect of varying the elastic properties of the pavement layers on the resulting allowable load in the layered elastic theory. These figures give the preliminary results of a sensitivity study for AC pavements, which shows the dependence of the predicted allowable load-carrying capacity on the values of the Young's

Table 4. Allowable Load and Required Overlay Thickness (Layered-Elastic Theory), Albuquerque Sunport

17	16	15	14	13	12	Ħ	10	9	œ	7	ο.	5	-	ω	N	۲	Site
1-8	7-8	7-38	T-6	T-2	1-2	T-2	R/W 12-30	R/W 12-30	R/W 3-21	7-30	T-1	T-1	Warmup	R/W 17-35	R/W 17-35	R/W 17-35	Feature
87+00	21+00	2+00	4+12.5	48+ 00	56+00	9+00	30+00	1÷05	9+00	2+00	21+00	7+00	Apron	100+07	19+00	6+13	818
AC	AC	AC	PCC	AC	AC	AC	AC	PCC	AC	AC	AC	AC	PCC	PCC	AC	PCC	Pavement Type
137	ŀ	76	156	93	1,8	72	143	38	44	74	137	147	1	ł	84	80	WS
253	1	135	253	168	88	135	253	67	88	126	232	252	1	ŀ	147	147	Total Allowal Load, kips BOE-727 DC-8
505	1	269	188	320	177	253	188	118	177	253	1 63	505	1	:	294	261	Allowable
589	1	303	573	370	202	303	573	118	202	295	5 4 7	589	1	1	336	269	DC-10
65	1	36	74	##	23	<u>ş</u>	88	18	23	5 5	65	70	ł	ł	40	38	121
8	1	32	60	100	21	೪	60	16	19	အ	55	60	ŧ	;	35	35	Allowable Low One Wheel, 1 BOE-727 DC-4
8	1	32	58	6	22	30	58	14	19	છ	55	8	}	ł	35	<u>u</u>	(COLOR DE L
70	}	36	68	44	24	36	&	14	23	35	15	ŢO	1.	!	40	32	kips -8 DC-10
0	1	0	0	0	*	0	0	10	+	0	٥	0	ł	!	0	0	AC Th
0	ł	ω	0	۲	0	ω	0	14	7	#-	0	0	1	1	2.0	5 1	AC Required Thickness, W BOE-727 I
0	ł	w	0	1.5	8	#	0	15	09	5	0	0	1	1	2.0	7	ed Overlays, in. * DC-8 DC-1
0	ł	+	0	1.5	7	=	0	16	8	5 1	0	0	1	1	3.0	9	ed Overlay s, in.* DC-8 DC-10
ŀ	ì	1	0	ł	1	1	ł	6	ł	1	1	ŀ	1	ł	ł	0	T .
ŀ	1	1	0	1	• }	1	I	9	ŀ	1	1	1	1	ł	1	2.0	PCC Required Overlay Thickness, in.* SW BOE-727 DC-8 DC-10
:	ŀ	1	0	ł	ł	1	ł	10	1	}	1	ŀ	1	1	1	3.0	DC-8
;	1	ŀ	0	ŀ	;	ł	ł	10	ł	1	1	ł	1	1	1	٥.4	rlay

^{*} Loads on one wheel: SW (35,625 lb) BOE-727 (41,090 lb) DC-8-63P (42,510 lb) DC-10-10 (51,420 lb)

The second of the second secon

Allowable Load and Required Overlay Thickness (CER Method), Albuquerque Sunport Table 5.

) 			Pavement			Total Allowable Load, kins	Llowab	le	14.6	Allowable Load on	Load	 g .	¥C	AC Required Overlay	o ove	rlay
Site	Feature	Sta	Type	CBR/k	MS	BOE-727 DC-8	00-8 00-8	DC-10	NS.	BOE-727 DC-8 DC-10	8-20	-10 -10	A A	SW BOE-727 DC-8 DC-10	18-30 18-30	DC-10
7	R/W 17-35	6+13	PCC	20 305 k	86	130	₹0£	390	2	31	36	94	ŧ	1	l	:
CI.	R/W 17-35	19+00	AC	₹	287	1751	738	788	135	101	88	105	0	0	0	0
m	R/W 17-35	101+07	PCC	13 235 k	36	95	977	178	17	13	11	12	1	ł	ŀ	ŀ
#	North Warmup	ŀ	PCC	25 340 k	1,3	73	73	187	50	17	22	27	1	;	ŀ	ł
\$	T-1	7+00	V C	80	183	172	944	240	87	79	53	₫	0	0	0	0
9	T-1	21+00	V C	52	228	339	558	675	108	81	99	&	0	0	0	0
۲-	T- 30	2+00	AC	8	215	321	553	629	102	92	8	82	0	0	0	0
60	R/W 3-21	00 + 6	V C	18	102	153	259	309	84	%	33	34	0	9.0	3.5	2.3
Q.	R/W 12-30	1+05	PCC	14 250 k	Ţή	%	172	207	8	16	50	25	ţ	1	1	ŀ
10	R/W 12-30	30+00	A C	54	574	838	1351	1663	273	199	160	197	0	0	0	0
11	T-2	00+6	AC	56	124	191	335	700	55	1,5	04	84	0	0	0.7	0.5
12	T- 2	26+00	A C	15	79	118	205	245	38	28	2ħ	8	0	5.6	5.5	4.2
13	T-2	1,8+00	AC	16	140	509	336	399	19	20	01	14	0	0	2.0	1.4
14	T-6	4+12.5	PCC	35 325 k	170	233	472	603	81	55	95	22	1	1	1	1
15	T-3B	2+00	AC	55	276	1,20	733	916	131	100	87	104	0	0	0	0
16	T-8	21+00	A C	141	312	1,73	795	935	148	112	₹ 6	111	0	0	0	0
11	T-8	87+00	AC	84	736	649	1067 1290	1290	207	154	127	153	0	0	0	0

* Loads on one wheel: SW (35,625 lb) BOE-727 (41,090 lb) DC-8-53F (42,510 lb) DC-10-10 (51,420 lb)

Table 6. Allowable Load and Required Overlay Thickness (DSM Method), Albuquerque Sunport

The second secon

					ľ										•	,				
			Pavement			Total Allowable Load, kips	lowab	je	₹	Allowable Load on One Wheel kins	e Load	E 2	AC E	AC Required Overlay	Overl	ß.	ည္	PCC Required (Overlay
Site	Feature	Sta	Type	DSM	AS	BOE-727	1.	DC-10	SH	SW BOR-727 DC-8 DC-10	β Ω	02-10	MS	BOE-727 DC-8 DC-10	0 0 0 0	C-10	S	SW BOE-727 DC-8 DC-10	12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	91 2
1	R/W 17-35	6+13	PCC	2008	75	102	217	531	%	77	92	35	0	7	9	Φ.	0	Φ.	∞	20
ď	R/W 17-35	19+00	V C	850**	78	911	202	5ħ6	37	58	77	53	0	2.5	4	4	ł	1	ł	ŀ
ю	R/W 17-35	100+01	PCC	615	23	%	&	##	#	6	Ħ	13	ł	ł	ı	;	1	1	ł	ł
4	North warmup	Apron	PCC	1486	26	81	186	249	27	19	8	8	0	9	<i>=</i>	8 0	m	€	-	0
ν.	T-1	7+00	¥C	880**	81	911	183	526	88	89	22	23	0	.	&	-	ł	ł	ŀ	ł
•	T- 1	21+00	V C	812**	75	107	169	197	35	92	80	23	0	æ	10	&	i	ł	1	ŀ
7	T-30	2+00	V C	685**	8	88	151	186	88	12	18	25	9.0	1	9/	-	ł	1	1	1
80	R/W 3-21	00+6	AC	¥#605	45	%	114	139	ដ	16	14	16	ĸ	80	12	Ħ	ł	1	1	1
ο,	R/W 12-30	1+05	PCC	930	35	57	140	171	11	1 1	11	80	-	12	6	15	®	п	0	£1
10	R/W 12-30	30+00	A C	1010**	96	137	215	562	94	33	56	31	0	m	۲-	9	ł	ı	ł	ł
11	T-2	00+6	V C	751**	6	104	179	222	33	25	72	56	0	т	-	2	ł	1	ł	ł
12	T-2	26+00	V C	**L99	25	87	150	183	25	ผ	18	52	1.7	۲	ο/	-	1	ł	ł	1
13	T-2	148+00	V C	720**	62	91	146	169	83	52	17	20	6.0	9	12	11	1	ŀ	:	1
17	T-6	4+12.5	PCC	4175	156	205	353	191	7	61	75	55	0	0	0	0	0	0	0	0
15	T-3B	2+00	AC	678**	9	8	150	178	53	73	18	น	9.0	5	6 0	_	ŀ	ı	ł	1
16	T-8	21+00	A C	809	17	108	172	50 7	35	56	50	54	0	.#	δ	-	ł	ł	1	1
11	T-8	87+00	AC	938**	98	127	207	238	141	30	25	28	0	٣	æ	9	ŀ	1	1	1

• Loads on one wheel: SW (35,625 lb) BOE-727 (41,090 lb) DC-8-63F (42,510 lb) DC-10-10 (51,420 lb)

^{**} DSM values have been adjusted for temperature on AC pavement

Table 7. Allowable Load and Required Overlay Thickness (Layered-Elastic Theory), Knox County Airport, Rockland, Maine

					Total Allowable	lowab	Je	A.	Allowable Load on	e Lose	uo	AC	AC Required Overlay	d Over	lay
81 te	Feature	Sta	Pavement Type	3	Load, kips BOE-727 DC-8		DC-10	- A	One Wheel, kips BOE-727 DC-8 DC	19 E	DC-10	E A	Thickness, in. BOE-727 DC-8 DC-10	100	-10
-	R/W 21	3+00	AC	9	109	202	442	31	56	2ħ	&	8	9	0,	σ.
~	R/W 21	23+00	AC	%	63	135	152	17	15	97	18	2	-	7	. Ф
က	R/W 21	37+00	Æ	36	29	135	152	17	16	16	18	₽	-	ω	∞
≠	T-B	22+00	AC	25	91	93	109	12	, H	Ħ	13	۲	1	7.	13
ŗ	Ramp	15+00A	AC	13	23	94	55	9	5.5	5.5	6.5	12	17	22	22
9	R/W 13	42+00	AC	ļ	;	Ì	ł	1	1	ł	ł	;	1	ł	
_	R/W 13	30+00	AC	65	109	202	236	31	56	7Z	28	CJ	9	6	∞
œ	R/W 13	5+65	AC	78	139	569	312	37	33	32	37	0	т	м	m
0/	T-A	00+9	AC	ļ	ŀ	1	1	1	:	1	ł	ł	ł	ł	

* Loads on one wheel: SW (35,625 lb) BOE-727 (41,090 lb) DC-8-63F (42,510 lb) DC-10-10 (51,420 lb)

Table 8. Allowable Load and Required Overlay Thickness (CBR Method*), Knox County Airport, Rockland, Maine

			Pavement	Pavement	Base		Total Allowable Load, kips	Llowab	je je	Y	Allowable Load on One Wheel, kins	Load	0 8	AC.	AC Required Overlay	d Over	lay.
Site	Site Feature	Sta		Thickness	CE	3	BOE-727	1	DC-10	NS:	BOE-727 DC-8 DC-10	DC-8	DC-10	A A	BOE-727	8	22
ત	R/W 3-21	3+00	AC	3.5	£4	26	16	156	196	27	8	19	23	٦	. =1	9	~
Ø	R/W 3-21	23+00	AC	3.25	35	143	89	120	151	8	16	7.	18	m	9	60	-
m	R/W 3-21	37+00	AC	3.0	52	.19	26	166	211	83	23	8	25	н.	ĸ	2	.
ব	I~B	22+00	AC	3.25	9	617	78	137	172	23	19	16	50	Q	~	!	r.
ζ.	Ramp	15+00	AC	3.25	143	53	78	147	185	25	50	17	55	α,	4	9	5
9	R/W 13-31	42+00	AC	4.375	75	54	87	151	188	17	12	10	य	N	2	-	2
7	R/W 13-31	30+00	AC	0.4	37	75	87	153	189	56	ผ	18	22	N	2	-	2
80	R/W 13-31	2+65	AC	3.0	10	75	19	32	14	9	7	. #	ĸ	7,7	8	27	7 7
6	T-A	00+9	AC	3.5	33	51	82	141	177	5₽	19	17	23	N	2	۲-	9

* Used only over base CBR's to get allowable load and used multi program

** Loads on one wheel: SW (35,625 lb) BOE-727 (41,090 lb) DC-8-63F (42,510 lb) DC-10-10 (51,420 lb)

Table 9. Allowable Load and Required Overlay Thickness (DSM Method), Knox County Airport, Rockland, Maine

						Total Allowable	llowab	le	V	Allowable Load on	e Load	8	AC 1	AC Required Overlan	0.00	100
į	:	į				Load, kips	kips			One Wheel,	el, kips	78		Thickness in)
Site	bite regture	Sta	Type	DGW	S	BOE-727	DC-8	DC-10	AS:	BOE-727	œΙ	DC-10	SE SE	BOE-727	DC-8 DC-10	DC-10
7	R/W 3-21	3+00	AC	549	64	89	103	118	23	16	12	7,1	m	12	8	20
0	B/W 3-21	23+00	AC	583	52	70	110	127	25	11	13	15	٣	11	19	8
æ	R/W 3-21	37+00	AC	615	55	19	.₹	118	56	16	11	7,1	∞	19	₹	14
਼ਕ	T-B	22+00	AC	200	71	1.2	92	92	23	12	9/	11	10	77	07	94
2	Ramp	15+00	AC	381	35	Z*1	29	73	17	10	7	6	16	83	84	₹
9	R/W 13-31	42+00	AC	446	69	87	129	158	33	21	15	19	4	12	18	ส
7	R/W 13-31	30+00	AC	1,82	14	57	89	100	19	17	11	12	ι	7.	52	23
ω	R/W 13-31	2+65	AC	009	75	65	107	127	56	15	13	15	m	15	22	5 <u>r</u>
0,	T-A	00+9	AC	119	09	92	111	135	53	18	13	16	7	14	25	56

* Loads on one wheel: SW (35,625 lb) BOE-727 (41,090 lb) DC-8-63F (42,510 lb) DC-10-10 (51,420 lb)

Table 10. Allowable Load and Required Overlay Thickness (Layered-Elastic Theory), Minneapolis-St. Paul International Airport

													i						
			Pavement		Total Al Load,	Allowable 1, kips	Je	≪	Allowable Load oo One Wheel, kins	Load	uo g	AC T	AC Required (Thickness.	d Overlay	rlay •	FCC	PCC Required	d Overlay	lay
Site	Feature	Sta	Type	AS	BOE-727	DC-8	02-10 10	35	BOE-727	96-9 0	00-10	AS B	BOE-727	DC-8 DC-10	0C-10	Si	BOE-727	œΠ	2
7	R/W 111-29R	2+65	PCC	126	185	37.1	472	9	11	111	26	0	0	0	0	0	,	0	0
N	R/W 111-29R	49+95	PCC	114	173	362	455	42	14	1,3	54	0	0	0	0	0	0		0
٣	R/W 11R-29L	7+15	AC/PCC	257	114	935	1103	122	8	111	131	0	0	0	0	0	0	0	0
-3	R/W 11R-29L	78+30	AC/PCC	569	392	817	1044	128	93	76	124	0	0	0	0	0	0	0	0
~	R/W 4R-22L	4+35	PCC	112	168	35#	944	53	9	27	53	0	1.0	1.0	0	0	0	0	0
9	R/W &R-22L	£4+29	PCC	200	316	704	859	95	75	2	102	0	0	0	0	0	0	0	0
-	T 111-29A	3+00	PCC	196	320	716	851	93	92	85	101	0	0	0	0	0	0	0	0
6 0	T 11R-29L	7+4	PCC	164	257	573	707	78	61	89	ಕ	0	0	0	0	0	0	0	0
0	T 48-22L	1+70	PCC	103	152	303	379	64	98	%	1,5	0	3.5	5.0	6.0	0	1.5	2.0	1.5
10	Mew reserve taxivay	7+34	PCC	213	88	195	716	101	11	Ľ.	85	0	0	0	0	0	0	0	0
Ħ	East side taxivay	12+45	PCC	ł	1	ŀ	1	1	1	1	1	1	ł	1	;	1	ł	ŀ	1
21	Old north ramp	12+45	PCC	116	181	396	1488	55	£4	14	58	0	0	0	0	0	0	0	0
13	Old ramp	12+45	AC/PCC	27	19	143	177	8	16	17	23	0.9	11.0	12.0	12.0	5.0	9.0	0.6	0.6
11	Remp	12+45	PCC	131	181	328	413	9.	143	39	64	0	0	3.5	2.0	0	0	1.5	1.0

* Loads on one wheel: SW (35,625 lb) BOE-727 (41,090 lb) DC-8-63F (42,510 lb) DC-19-10 (51,420 lb)

Allowable Load and Required Overlay Thickness (DSM Method), Minneapolis-St. Paul International Airport Table 11.

												•	1							
			Pavement			Total Allowable Load, kips	Llowab	Je	4)	Allowable L	E Load on	E S	J¥C	AC Required Overlay	d Overle	lay.	PCC	PCC Required Overlay	ğ	S.
Site	Site Feature	Sta	Type	DSM	NS.	BOE-727	DC-3	07-20	AS.	BOE-727	œΙ	10 10 10 10	AS AS	BOE-727		01-3	NA NA	BOE-727 DC-8 D	2	120
7	R/W 111-29R	2+ 65	PCC	3350	118	171	384	522	26	14	91	8	0	0	0	0	0	-#	a	0
~	R/W 111-29R	49+95	PCC	2648	8	143	355	664	14	Ħ.	88	22	0	0	0	0	0	9	~	CV.
m	R/W 11R-29L	7+31	AC/PCC	3435##	128	174	354	475	19	14	1,2	26	0	0	0	0	0	0	0	0
4	R/W 11R-29L	78+30	AC/PCC	5754**	215	282	516	688	102	19	61	82	0	0	0	0	0	0	0	0
~	R/W 4R-22L	M+35	PCC	1835	69	%	217	288	33	23	%	₹	0	ю	m	0	-	1	-	ia)
9	R/W 48-22L	62+47	PCC	1740	177	241	545	129	\$	73	65	87	0	0	0	0	0	-3	~	•
1	T 111-29R	3+00	PCC	388	145	201	1,52	617	\$	97	47	73	0	0	0	0	0		a	0
80	T 11R-29L	4+75	PCC	6700	250	351	784	1065	119	83	93	126	0	0	0	0	0		N	0
6	T 4R-22L	1+70	PCC	1840	%	91	215	293	33	23	%	35	0	0	0	0	0	2	4	1.6
9	New reserve taxivay	7+34	PCC	2955	110	150	310	419	25	3 6	37	20	0	0	0	0	0	0	0	0
п	East side taxivay	13+70	PCC	7760	8	004	998	1153	138	95	103	140	0	0	0	0	0	0	0	0
21	Old north		PCC	1720	19	&	192	256	8	23	23	8	0	6 0	9 0	ľ	m	6	6	7
ET	Old remp		AC/PCC	***106	₹	917	92	124	16	H	n	15	0	9	1	m	0	۲	€	د
41	Terminal apron	٠.	PCC	5420	203	275	559	160	96	65	99	8	0	0	0	0	0	4	m	0

• Loads on one wheel: SW (35,625 lb) BOE-727 (41,090 lb) DC-8-63F (42,510 lb) DC-10-10 (51,420 lb)

** Temperature corrected DSM

Table 12. Allowable Load and Required Overlay Thickness (Westergaard Method), Minneapolis-St. Paul International Airport

1													4 (1					
			Pavement		r	Total Allowable Load, kins	Llowab	ej.	₹	Allowable One Whee	E Load on	n s	AC T	AC Required Overlay	Over	1ay **	ည်	PCC Required Overlay	4 Q	r107
Site	Feature	Sta	Type	*	AS	BOE-727		0C-10	MS	BOE-727 DC-8 DC-10	8	S-10	S	BOE-727	DC-8 DC-10	C-10	SS IN	SW BOE-727	8-3	20-10
	R/W 111-29R	59+5	PCC	\$50	128	190	720	519	79	54	53	69	0	0	0	0	0	. 4	m	Ο'
0	R/W 111-29R	\$6+64	PCC	36 0	108	161	389	864	2	88	917	29	0	0	0	0	0	9	~	N
Ю	R/W 11R-29L	7+31	AC/PCC	560	165	235	517	665	18	36	19	62	0	0	0	0	0	8	н	0
-4	R/W 11R-24L 78+30	78+30	AC/PCC	435	245	345	740	η56	911	82	88	113	0	0	0	0	0	0	0	0
	R/W 4R-22L	4+35	PCC	230	8	143	333	1 28	91	ಸ	04	13	0	м	m	0	7	۴-	t-	4
9	R/W 48-22L	£4+29	PCC	8	145	211	064	588	\$	20	82	20	0	0	0	0	0	٣	ч.	0
	T 111-29R	3+00	PCC	350	131	192	1,53	583	62	3	4	\$	0	0	0	0		4	60	0
6 0	T 11R-29L	4+75	PCC	540	137	203	1483	622	65	84	24	7.	0	0	0	0	0	-3	8	0
0	T 4R-22L	1+70	PCC	270	Ħ	163	384	464	53	œ	91	29	0	0	0	0	0	9	. #	m
01	New reserve taxiway	7+34	PCC	200	212	307	η <i>L</i> 9	966	101	72	8	103	0	0	0	0	0	0	0	0
11	East side taxiway	13+70	PCC	1,50	185	265	965	991	88	63	Ę.	8	0	0	0	0	0	0	0	0
75	Old north remp		204	155	87	125	281	360	141	30	33	£4,	0	&	80	5	m	٥/	ο.	!
13	Old ramp		AC/PCC	105	86	61	158	195	139	15	19	23	0	9	-	m	0	-	80	~
71	Terminal apron		PCC	550	139	195	419	538	99	91	20	79	0	0	0	0	0	4	æ	0

^{*} k walues determined from CBR (small aperture test)

** Loads on one wheel: SW (35,625 lb) BOE-727 (41,090 lb) DC-8-63F (42,510 lb) DC-10-10 (51,420 lb)

Figure 19. Comparisons of allowable load on single wheel by PAVEVAL, DSM, and CBR methods

Figure 20. Comparison of allowable gross load on DC-8 aircraft by PAVEVAL, DSM, and CBR methods

Figure 21. Comparisons of required overlay thickness for single wheel by PAVEVAL, DSM, and CBR methods

Figure 22. Comparisons of required overlay thickness for DC-8 aircraft by PAVEVAL, DSM, and CBR methods

Figure 23. Sensitivity study of allowable load for AC pavement (case of strong base)

Figure 24. Sensitivity study of allowable load for AC pavements (case of weak base)

moduli of the pavement layers. The layered elastic theory approach to pavement evaluation predicts a very complicated dependence of the allowable load on the layered elastic structure of the pavement. Figure 23 shows the results for the case of an AC layer over a relatively strong base layer, while Figure 24 illustrates the results for the case of an AC layer over a relatively weak base layer. The results for these two cases are quite different because the limiting vertical strain in the subgrade is manifested for the case of a strong base, while the limiting tensile strain at the bottom of the AC layer tends to control for the case of an AC layer over a relatively weak base.

The results of Figures 23 and 24 indicate that the layered elastic theory and the prescribed limiting strain and stress conditions produce a predicted allowable load-carrying capacity that is very sensitive to the elastic properties of the pavement. In particular, under some conditions the predicted allowable load may be a decreasing function of the Young's moduli of the pavement layers. This is due in some cases to the fact that the limiting tensile strain at the bottom of the AC layer is a decreasing function of the AC Young's modulus. ^{14,18} For instance, in Figure 24 the allowable load increases with the AC Young's modulus up to a point where the decrease in the value of the limiting tensile strain at the bottom of the AC layer begins to lower the allowable load.

SUMMARY AND CONCLUSIONS

SUMMARY

The capability of determining the load-carrying capacity of a pavement and the overlay thickness required to upgrade a pavement is of much importance to pavement engineers. A simple method of pavement evaluation combining vibratory nondestructive field tests with a theoretical layered elastic formalism was developed to satisfy the needs of the pavement engineer. The pavement evaluation and overlay design is based on the subgrade Young's modulus value determined from vibratory nondestructive testing and the subgrade Young's modulus value used in a layered elastic theory computer program to calculate the allowable load-carrying capacity and the required overlay thickness of a pavement.

Two computer programs, SUBE and FAVEVAL, are used to evaluate a pavement based on the combined layered elastic theory and vibratory non-destructive test approach. The computer program SUBE predicts the value of the subgrade Young's modulus from the measured dynamic load-deflection curves and the known values of the elastic moduli and thicknesses of the pavement layers. The computer program PAVEVAL calculates the allowable load-carrying capacity and the required overlay thickness based on the layered elastic theory by relating the limiting stress and strain values at points in the pavement or subgrade to the magnitude of the static load applied to the pavement surface.

The validation of the results of the combined predictions of the computer programs SUBE and PAVEVAL was obtained at three airport sites and included AC and PCC pavements.

CONCLUSIONS

The theoretical and experimental work done for the validation of the procedure of using the combined methods of vibratory nondestructive testing and layered elastic theory for calculating the allowable load-carrying capacity and the required overlay thickness of a pavement yielded the following conclusions:

- <u>a.</u> For the sites considered, generally poor agreement is obtained between the values of the subgrade Young's modulus predicted by the computer program SUBE and the formula $E_S=1500$ CBR, and by extraction of the Young's modulus from the laboratory resilient modulus measurements.
- <u>b.</u> Although there is some scattering of data in comparing allowable loads from PAVEVAL with the standard CBR method, there is generally good agreement. As a matter of fact, the agreement between the PAVEVAL results and the CBR method is better than between the DSM method and the CBR method. The greatest scatter occurred with the AC pavements at Albuquerque and some PCC pavements at Minneapolis-St. Paul.
- c. Results from the overlay comparisons were not as encouraging as the allowable load comparisons. The PAVEVAL analysis tended to predict thicker overlays than did the CBR method.

REFERENCES

- 1. Green, J. L. and Hall, J. W., Jr., "Nondestructive Vibratory Testing of Airport Pavements; Evaluation Methodology and Experimental Test Results," Vol 1, Report No. FAA-RD-73-305-I, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1975.
 - 2. Green, J. L., "Literature Review Elastic Constants for Airport Pavement Materials," Report No. FAA-RD-76-138, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1978.
 - 3. Weiss, R. A. "Nondestructive Vibratory Testing of Airport Pavements; Theoretical Study of the Dynamic Stiffness and Its Application to the Vibratory Nondestructive Method of Testing Pavements," Vol 2, Report No. FAA-RD-73-2-5-II, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1975.
 - 4. _____, "Subgrade Elastic Moduli Determined from Vibratory Testing of Pavements," Report No. FAA-RD-76-158, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1977.
 - 5. Tomita, H., "Field NDE of Airport Pavements; Materials Evaluation," Vol XXXIII, No. 7, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1975.
- 6. Department of Transportation, Federal Aviation Administration, "Use of Nondestructive Testing Devices in the Evaluation of Airport Pavements," Advisory Circular, AC No. 150/5370-11, Washington, D. C., 1976.
- 7. Weiss, R. A., "Pavement Evaluation and Overlay Design Using Vibratory Nondestructive Testing and Layered Elastic Theory; Development of Procedure," Vol 1, Report No. FAA-RD-77-186-I, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1980.
- 8. Department of Transportation, Federal Aviation Administration, "Airport Pavement Design and Evaluation," Advisory Circular, AC No. 150/5320-6B, Washington, D. C., 1974.
- 9. Heukelom, W. and Foster, C. R., "Dynamic Testing of Pavements,"

 Transactions, American Society of Civil Engineers, Vol 127, Part I,

 1962, pp. 425-457.

- 10. Allen, J. A. and Thompson, M. R., "The Effects of Non-Constant Lateral Pressures on the Resilient Response of Granular Materials," Department of Civil Engineering, University of Illinois, Urbana, Ill., 1973.
- 11. Thompson, M. R. and Robnett, Q. L., "Resilient Properties of Subgrade Soils," Final Report No. UILU-ENG-76-2009, Transportation Research Laboratory, Department of Civil Engineering, University of Illinois, Urbana, Ill., 1976.
- 7. "Data Summary Resilient Properties of Subgrade Soils,"
 Final Report UILU-ENG-76-2009, Transportation Research Laboratory,
 Department of Civil Engineering, University of Illinois, Urbana,
 Ill., 1976.
- 13. Hutchinson, R. L., "Base of Rigid Pavement Design for Military Airrields," Miscellaneous Paper No. 5-7, Department of the Army, Ohio River Division Laboratories, Corps of Engineers, Cincinnati, Ohio, 1966.
- 14. Barker, W. R. and Brabston, W. N., "Development of a Structural Design Procedure for Flexible Airport Pavements," Technical Report S-75-17, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss., 1975.
- 15. Parker, F., Barker, W. R., Gunkel, R. C., and Odom, E. C., "Development of a Structural Design Procedure for Rigid Airport Pavements," Report No. FAA-RD-77-81, Department of Transportation, Federal Aviation Administration, Washington, D. C. 1979.
- 16. Brown, D. N. and Thompson, O. O., "Lateral Distribution of Aircraft Traffic," Miscellaneous Paper S-73-56, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss., 1973.
- 17. HoSang, V. A., "Field Survey and Analysis of Aircraft Distribution on Airport Favements," Report No. FAA-RD-74-36, Department of Transportation, Federal Aviation Administration, Washington, D. C., 1975.
- 18. Hall, J. W., Jr., and Elsea, D. R., "Small Aperture Testing for Airfield Pavement Evaluation," Miscellaneous Paper S-74-3, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss., 1974.

